π‘What is RGB?
RGB is a scalable & confidential smart contracts system for Bitcoin & lightning network. They embrace concepts of private & mutual ownership, abstraction and separation of concerns and represent "post-blockchain", Turing-complete form of trustless distributed computing which does not require introduction of "tokens".
RGB is not a token protocol. Though issuance and management of highly scalable, programmable and private assets of different sort is possible with RGB, it can be applied in many industries far beyond financial world.
As a smart contract system RGB is quite different from previous approaches, both Bitcoin-based (Colored coins, Counterparty, OMNI) and non-bitcoin (Ethereum, EOS and others):
RGB separates concept of smart contract issuer, state owners and state evolution
RGB keeps the smart contract code and data off-chain
RGB uses blockchain as a state commitment layer and Bitcoin script as an ownership control system; while smart contract evolution is defined by off-chain schema
More about these concepts can be read in this presentation.
Core underlying concepts
In order to understand technical details behind RGB one has to become familiar with the following concepts, which are heavily used in RGB design:
Distributed systems (replicated state machines), including
PRISM (partially-replicated infinite state machines) computing
AluVM instruction set architecture
Non-imperative computing, including
Declarative functional programming
Cellular automation
Zero knowledge protocols, including
Confidential transactions
Bulletproofs
Cryptographic commitment schemes, including
BIP-340 tagged hashes
Advanced merklization schemes (LNPBP-81)
Multi-message commitments (LNPBP-4)
Deterministic bitcoin commitments (LNPBP-1, 2, 3)
Client-side-validation, including:
Strict encoding (LNPBP-7)
Commit-conceal schemes
Single-use-seals
Proof-of-publication
Bitcoin transactions, including
PSBTs v1 and v2 (BIP-174, BIP-370)
Bitcoin TxO2 single-use-seals
Lightning network protocol, including
Lightning P2P message extensions
Generalized lightning channels
Design
Briefly, RGB smart contracts operate with client-side validation paradigm, meaning that all the data is kept outside of the bitcoin transactions, i.e. bitcoin blockchain or lightning channel state. This allows the system to operate on top of Lightning Network without any changes to the LN protocols and also gives a foundation for a high level of protocol scalability and privacy.
As a security mechanism RGB uses single-use seals defined over bitcoin transaction outputs (UTXO), which provides ability for any party having smart contract state history to verify its uniqueness. In other words, RGB leverages Bitcoin script for its security model and definition of the ownership and access rights.
Each RGB smart contract is represented by some genesis state, created by smart contract issuer (or, put simply, issuer) and a directed acyclic graph (DAG) of state transitions kept in form of client-validated data (i.e. this data is not stored on blockchain or within LN transactions/channel state). The state is assigned to unspent bitcoin transaction outputs (UTXO), which defines them as single-use seals. The party that is able to spend corresponding transaction output is named a party owning state: it is a party that has the right to change the corresponding part of the smart contract state by creating a new state transition and committing to it in a transaction spending the output containing previous state. This procedure represents closing of a seal over state transition, and a pair of spending transaction and corresponding extra-transaction data on the state transition are named witness.
State transition assigns state to a set of defined single-use seals. Each smart contract may maintain different forms of state and define different kinds of single-use seals with different validation rules. Additionally to this, state transition may contain different metadata and scripts, defining parts of its business logic.
Which types of state, seals, metadata and which script extensions are allowed within state transitions is defined by schema. Thus, schema can be seen as validation rules for client-side validation; schema is always defined by the issuer in state genesis. Schema also may contain Turing-complete scripts defining parts of the business logic for client-side validation.
RGB operates in βshardsβ, where each contract has a separate state history and data; different smart contracts never intersect in their histories directly. This allows another level of scalability; and while the term βshardβ is incorrect, we use it to demonstrate that RGB actually achieves what was planned to be achieved with βEthereum shardsβ.
While being separately maintained, RGB contracts may interact via Bifrost protocol over the Lightning Network, allowing multiparty coordinated state changes, which, for instance, enables functionality like DEX over Lightning etc.
Thus, by their abilities RGB smart contracts go beyond what is possible with Ethereum-like smart contract system, providing more layered, scalable, private and safe approach, where the ownership of the smart contract state is separated from the smart contract creation.
Compatibility and interoperability
SegWit v0
Taproot (SegWit v1), Tapscript
Schnorr signatures
Ed19255 signatures and Curve19255 keys
Miniscript
Eltoo (SIGHASH_ANYPREVOUT)
OP_CHECKTEMPLATEVERIFY
Lightning network
Atomic swaps
UTXO-based blockchains with Bitcoin script
Tor
Internet2
History & Acknowledgements
RGB was originally envisioned in 2016 by Giacomo Zucco (BHB Network) as a "non-blockchain based asset system" basing on earlier ideas of Peter Todd about client-side-validation and single-use-seals and implemented as original MVP around 2017 by BHB Network with support from Poseidon Group. Since 2019, Dr Maxim Orlovsky, Pandora PrimeΒ AG, acts as the main designer and lead contributor to RGB protocol, designing and implementing more than 95% of its current code and underlying standards. Since 2019 RGB was restructured and re-thought from scratch by him as a generic form of computing and confidential smart contracting system. This refactoring happened as a part of LNP/BP Standards effort, created in 2019 and initially funded by iFinex Inc and Fulgur Ventures (2019H2-2020H1), and, later (from 2020H2), by Pandora Prime AG, personal funds of Dr Maxim Orlovsky and community donations. A lot of input into RGB design, re-design and protocol peer-review came from a broader community, which included contributions from more than 50 people and organizations, including:
Christophe Diederichs,
ClΓ‘udio de Castro,
Chris Stewart,
Emil Bayes,
Fabrizio Armani,
Federico Tenga,
Juraj Bednar,
Martino Salvetti,
Max Hillebrand,
Marco Amadori,
Martin HabovΕ‘tiak,
Nadav Kohen,
Nicola Busanello,
Rajar Shimaitra,
Rene Pickhardt,
Reza Bandegi,
Stefano Pellegrini,
ZmnSCPxj,
Zoe Faltiba,
The community and contribution management since 2019 was performed by Olga Ukolova, Pandora Prime AG.
Many input into protocol design ideas and suggestions came from personal conversations of Dr Maxim Orlovsky and Giacomo Zucco with notable cryptographers, specialists on distributed systems and game theorists, including:
Adam Back,
Andrew Poelstra,
Christian Decker,
Christopher Allen,
Pieter Wuille,
Peter Todd,
Sabina Sachtachtinskagia,
We are thankful to the early adopters of RGB protocols, who invested and continue to invest into RGB integration and independent peer reviews:
HodlHodl
Bitfinex & Tether Inc
Condensat Technologies
inbitcoin
SuredBits
Blockchain Of Things
Atomic Loans
Farcaster project
Sphinx
Nym
Last updated